kubernetes的存储
目录:
kubernetes Volume
容器销毁时,保存在容器内部文件系统中的数据都会被清除,需要kubernetes volume来进行保存容器的数据。
Volume的生命周期独立于容器,Pod中的容器可能被销毁和重建,但Volume会被保留。Volume提供了对各种backend的抽象,Kubernetes Volume
支持多种backend类型,包括emptyDir、hostPath、GCE Persistent Disk
、AWS Elastic Block Store
、NFS、Ceph等,完整列表可参考官方文档
emptyDir Volume
emptyDir Volume
是Host
上的一个空目录
apiVersion: v1
kind: Pod
metadata:
name: producer-consumer
spec:
containers:
- image: busybox
name: producer
volumeMounts:
- mountPath: /producer_dir
name: shared-volume
args:
- /bin/sh
- -c
- echo "Hello World" > /producer_dir/hello; sleep 30000
- image: busybox
name: consumer
volumeMounts:
- mountPath: /consumer_dir
name: shared-volume
args:
- /bin/sh
- -c
- cat /consumer_dir/hello; sleep 30000
volumes:
- name: shared-volume
emptyDir: {}
volumes定义了一个emptyDir类型的Volume shared-volume
apply之后看一下Pod分配的节点
[why@why-01 ~]$ kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
producer-consumer 2/2 Running 0 5m38s 10.244.2.71 why-03 <none> <none>
在节点上查看一下Pod中每个容器的挂载情况
[root@why-03 ~]# docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
b354b88554ab busybox "/bin/sh -c 'cat /co…" 6 minutes ago Up 6 minutes k8s_consumer_producer-consumer_default_6a8a819d-fbc5-11e8-91a0-5254005c0df5_0
cc48349fe116 busybox "/bin/sh -c 'echo \"H…" 6 minutes ago Up 6 minutes k8s_producer_producer-consumer_default_6a8a819d-fbc5-11e8-91a0-5254005c0df5_0
[root@why-03 ~]# docker inspect b354b88554ab
{
"Type": "bind",
"Source": "/var/lib/kubelet/pods/6a8a819d-fbc5-11e8-91a0-5254005c0df5/volumes/kubernetes.io~empty-dir/shared-volume",
"Destination": "/consumer_dir",
"Mode": "",
"RW": true,
"Propagation": "rprivate"
}
[root@why-03 ~]# docker inspect cc48349fe116
{
"Type": "bind",
"Source": "/var/lib/kubelet/pods/6a8a819d-fbc5-11e8-91a0-5254005c0df5/volumes/kubernetes.io~empty-dir/shared-volume",
"Destination": "/producer_dir",
"Mode": "",
"RW": true,
"Propagation": "rprivate"
},
可以看到两个Docker容器挂载了同一个目录
emptyDir是Host上创建的临时目录,其优点是能够方便地为Pod中的容器提供共享存储,不需要额外的配置。但它不具备持久性,如果Pod不存在了,emptyDir也就没有了。根据这个特性,emptyDir特别适合Pod中的容器需要临时共享存储空间的场景,比如生产者消费者用例。
hostPath Volume
hostPath Volume
使用Host上的目录Mount到Pod上,适合
api-server就是通过挂载配置文件到Pod中的
[why@why-01 ~]$ kubectl edit --namespace=kube-system pod kube-apiserver-why-01
...省略部分
volumeMounts:
- mountPath: /etc/ssl/certs
name: ca-certs
readOnly: true
- mountPath: /etc/pki
name: etc-pki
readOnly: true
- mountPath: /etc/kubernetes/pki
name: k8s-certs
readOnly: true
...省略部分
volumes:
- hostPath:
path: /etc/ssl/certs
type: DirectoryOrCreate
name: ca-certs
- hostPath:
path: /etc/pki
type: DirectoryOrCreate
name: etc-pki
- hostPath:
path: /etc/kubernetes/pki
type: DirectoryOrCreate
name: k8s-certs
...省略部分
如果Pod被销毁了,hostPath对应的目录也还会被保留,hostPath的持久性比emptyDir强。不过一旦Host崩溃,hostPath也就没法访问了
PV
PersistentVolume (PV) 是外部存储系统中的一块存储空间,与 Volume 一样,PV具有持久性,生命周期独立于Pod
PersistentVolumeClaim (PVC) 是对PV的申请 (Claim)。PVC通常由普通用户创建和维护。需要为Pod分配存储资源时,用户可以创建一个PVC,指明存储资源的容量大小和访问模式(比如只读)等信息,Kubernetes 会查找并提供满足条件的PV。
有了PersistentVolumeClaim,开发只需要告诉Kubernetes需要什么样的存储资源,而不必关心真正的空间从哪里分配,如何访问等底层细节信息。这些Storage Provider
的底层信息交给运维来处理,只有运维才应该关心创建PersistentVolume
的细节信息。
kubernetes支持的PV的完整列表请参考
示例通过NFS来实现
Server端
$ yum install -y nfs-utils
$ systemctl start rpcbind
$ systemctl start nfs
$ mkdir -p /data/nfs
$ chown nfsnobody.nfsnobody /data/nfs/
$ vi /etc/exports
/data/nfs 172.19.0.0/16(rw,sync)
$ systemctl reload nfs
$ showmount -e localhost
Export list for localhost:
/data/nfs 172.19.0.0/16
Client端
$ yum install -y nfs-utils
$ systemctl start rpcbind
$ showmount -e 172.19.0.4
Export list for 172.19.0.4:
/data/nfs 172.19.0.0/16
静态供给
nfs-pv1.yml
apiVersion: v1
kind: PersistentVolume
metadata:
name: mypv1
spec:
capacity:
storage: 1Gi
accessModes:
- ReadWriteOnce
persistentVolumeReclaimPolicy: Recycle
storageClassName: nfs
nfs:
path: /data/nfs
server: 172.19.0.4
- capacity指定PV的容量为1G。
- accessModes指定访问模式为ReadWriteOnce,支持的访问模式有:
- ReadWriteOnce PV能以read-write模式mount到单个节点。
- ReadOnlyMany PV能以read-only模式mount到多个节点。
- ReadWriteMany PV能以read-write模式mount到多个节点。
- persistentVolumeReclaimPolicy 指定当PV的回收策略为Recycle,支持的策略有:
- Retain 需要手工回收
- Recycle 清除PV中的数据,效果相当于执行
rm -rf /thevolume/*
- Delete 删除
Storage Provider
上的对应存储资源,例如AWS EBS、GCE PD、Azure Disk、OpenStack Cinder Volume
等。
- storageClassName 指定PV的class为nfs。相当于为PV设置了一个分类,PVC可以指定class申请相应class的PV。
- path 指定PV在NFS服务器上对应的目录。
[why@why-01 ~]$ kubectl apply -f nfs-pv1.yml
persistentvolume/mypv1 created
[why@why-01 ~]$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
mypv1 1Gi RWO Recycle Available nfs 4m54s
STATUS为Available,表示mypv1就绪,可以被PVC申请
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: mypvc1
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: nfs
apply pvc
[why@why-01 ~]$ kubectl apply -f nfs-pvc1.yml
persistentvolumeclaim/mypvc1 created
[why@why-01 ~]$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
mypvc1 Bound mypv1 1Gi RWO nfs 6s
[why@why-01 ~]$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
mypv1 1Gi RWO Recycle Bound default/mypvc1 nfs 11m
mypvc1已经Bound到mypv1
pod-pvc1.yml
apiVersion: v1
kind: Pod
metadata:
name: mypod1
spec:
containers:
- name: mypod1
image: busybox
args:
- /bin/sh
- -c
- sleep 30000
volumeMounts:
- mountPath: "/mydata"
name: mydata
volumes:
- name: mydata
persistentVolumeClaim:
claimName: mypvc1
在volumes中通过persistentVolumeClaim指定使用mypvc1申请的Volume
创建Pod
[why@why-01 ~]$ kubectl apply -f pod-pvc1.yml
pod/mypod1 created
[why@why-01 ~]$ kubectl exec mypod1 touch /mydata/a
在nfs主机上查看是否创建成功
[root@why-03 nfs]# pwd
/data/nfs
[root@why-03 nfs]# ll
total 0
-rw-r--r-- 1 nfsnobody nfsnobody 0 Dec 10 02:01 a
关于PV的回收
- 因为PV设置了
persistentVolumeReclaimPolicy: Recycle
,当PVC mypvc1
被删除之后,kubernetes会启动一个新的Pod recycler-for-mypv1来删除PV mypv1
的数据。此时的mypv1的状态为Released,表示已经解除了与mypvc1的Bound,正在清除数据,不过此时还不可用。当数据清除完毕,mypv1的状态重新变为Available,此时则可以被新的PVC申请 - 如果策略被设置为Retain,当PVC被删除之后,但是PV中的数据还在
动态供给
相比静态供给,动态供给有明显的优势:不需要提前创建PV
动态供给通过StorageClass实现的,不过nfs不支持动态供给
待续~
更多类型的动态供给PV参考官方文档
通过PVC实现MySQL故障恢复
apiVersion: v1
kind: PersistentVolume
metadata:
name: mysql-pv
spec:
accessModes:
- ReadWriteOnce
capacity:
storage: 1Gi
persistentVolumeReclaimPolicy: Retain
storageClassName: nfs
nfs:
path: /data/nfs
server: 172.19.0.4
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: mysql-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: nfs
---
apiVersion: v1
kind: Service
metadata:
name: mysql
spec:
ports:
- port: 3306
selector:
app: mysql
---
apiVersion: apps/v1beta1
kind: Deployment
metadata:
name: mysql
spec:
selector:
matchLabels:
app: mysql
template:
metadata:
labels:
app: mysql
spec:
containers:
- image: mysql:5.6
name: mysql
env:
- name: MYSQL_ROOT_PASSWORD
value: password
ports:
- containerPort: 3306
name: mysql
volumeMounts:
- name: mysql-persistent-storage
mountPath: /var/lib/mysql
volumes:
- name: mysql-persistent-storage
persistentVolumeClaim:
claimName: mysql-pvc
注意这里nfs的配置需要no_root_squash
,否则会报权限问题
$ vi /etc/exports
/data/nfs 172.19.0.0/16(rw,sync,no_root_squash)
$ systemctl reload nfs
进行apply
[why@why-01 ~]$ kubectl apply -f mysql.yml
persistentvolume/mysql-pv created
persistentvolumeclaim/mysql-pvc created
service/mysql created
deployment.apps/mysql created
[why@why-01 ~]$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
mysql-7686899cf9-4jtmg 1/1 Running 0 8s 10.244.1.43 why-02 <none> <none>
在MySQL写入数据
[why@why-01 ~]$ kubectl run -it --rm --image=mysql:5.6 --restart=Never mysql-client -- mysql -h mysql -ppassword
If you don't see a command prompt, try pressing enter.
mysql> use mysql
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A
Database changed
mysql> create table test(id int(4));
Query OK, 0 rows affected (0.05 sec)
mysql> insert test values( 1111 );
Query OK, 1 row affected (0.01 sec)
mysql> select * from test;
+------+
| id |
+------+
| 1111 |
+------+
1 row in set (0.00 sec)
模拟关掉Pod所在一个节点
[why@why-01 ~]$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
mysql-7686899cf9-4jtmg 1/1 Terminating 0 77m 10.244.1.43 why-02 <none> <none>
mysql-7686899cf9-7wj5f 1/1 Running 0 62m 10.244.2.73 why-03 <none> <none>
再度查询
[why@why-01 ~]$ kubectl run -it --rm --image=mysql:5.6 --restart=Never mysql-client -- mysql -h mysql -ppassword
If you don't see a command prompt, try pressing enter.
mysql> use mysql
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A
Database changed
mysql> select * from test;
+------+
| id |
+------+
| 1111 |
+------+
1 row in set (0.00 sec)
可以看到数据还是有的
Secret
应用启动过程中可能需要一些敏感信息,比如访问数据库的用户名密码或者秘钥。将这些信息直接保存在容器镜像中显然不妥,Kubernetes提供的解决方案是Secret
Secret会以密文的方式存储数据,避免了直接在配置文件中保存敏感信息。Secret会以Volume的形式被mount到Pod,容器可通过文件的方式使用Secret中的敏感数据;此外,容器也可以环境变量的方式使用这些数据
创建Secret
有四种方法创建Secret:
1.通过--from-literal
:
$ kubectl create secret generic mysecret --from-literal=username=admin --from-literal=password=123456
每个--from-literal
对应一个信息条目
2.通过--from-file
:
$ echo -n admin > ./username
$ echo -n 123456 > ./password
$ kubectl create secret generic mysecret --from-file=./username --from-file=./password
每个文件内容对应一个信息条目
- 通过
--from-env-file
:
$ cat << EOF > env.txt
username=admin
password=123456
EOF
$ kubectl create secret generic mysecret --from-env-file=env.txt
文件env.txt中每行Key=Value
对应一个信息条目
- 通过 YAML 配置文件:
mysecret.yml
apiVersion: v1
kind: Secret
metadata:
name: mysecret
data:
username: YWRtaW4=
password: MTIzNDU2
这些字段都是通过base64加密获得的
$ echo -n admin | base64
YWRtaW4=
$ echo -n 123456 | base64
MTIzNDU2
apply secret
$ kubectl apply -f secret.yml
secret/mysecret created
查看创建的secrets
$ kubectl get secrets mysecret
NAME TYPE DATA AGE
mysecret Opaque 2 3m58s
$ kubectl describe secret mysecret
Name: mysecret
Namespace: default
Labels: <none>
Annotations:
Type: Opaque
Data
====
password: 6 bytes
username: 5 bytes
可以看到分别是5和6个字符
如果需要查看
$ kubectl edit secret mysecret
# Please edit the object below. Lines beginning with a '#' will be ignored,
# and an empty file will abort the edit. If an error occurs while saving this file will be
# reopened with the relevant failures.
#
apiVersion: v1
data:
password: MTIzNDU2
username: YWRtaW4=
kind: Secret
metadata:
annotations:
kubectl.kubernetes.io/last-applied-configuration: |
{"apiVersion":"v1","data":{"password":"MTIzNDU2","username":"YWRtaW4="},"kind":"Secret","metadata":{"annotations":{},"name":"mysecret","namespace":"default"}}
creationTimestamp: "2018-12-10T08:42:44Z"
name: mysecret
namespace: default
resourceVersion: "493011"
selfLink: /api/v1/namespaces/default/secrets/mysecret
uid: 9067c44e-fc57-11e8-91a0-5254005c0df5
type: Opaque
$ echo -n MTIzNDU2 | base64 --decode
123456
$ echo -n YWRtaW4= | base64 --decode
admin
通过volume方式使用secret
pod-sec.yml
apiVersion: v1
kind: Pod
metadata:
name: mysecret
spec:
containers:
- name: mysecret
image: busybox
args:
- /bin/sh
- -c
- sleep 10; touch /tmp/healthy; sleep 30000
volumeMounts:
- name: foo
mountPath: "/etc/foo"
readOnly: true
volumes:
- name: foo
secret:
secretName: mysecret
挂载到Pod
$ kubectl apply -f pod-sec.yml
pod/mysecret created
$ kubectl exec -it mysecret sh
/ # cat /etc/foo/username
admin
/ # cat /etc/foo/password
123456
可以看到kubernetes为每个敏感信息创建了一个数据条目
可以直接指定位置
volumes:
- name: foo
secret:
secretName: mysecret
item:
- key: username
path: mydata/myusername
- key: password
path: mydata/mypassword
通过volume指定的数据可以通过修改secret而同步到容器
修改mysecret.yml
password: YWJjZGVm
apply之后等待几秒就可以看到变化
/ # cat /etc/foo/password
123456
/ # cat /etc/foo/password
abcdef
通过环境变量方式使用Secret
apiVersion: v1
kind: Pod
metadata:
name: mysecret
spec:
containers:
- name: mysecret
image: busybox
args:
- /bin/sh
- -c
- sleep 10; touch /tmp/healthy; sleep 30000
env:
- name: SECRET_USERNAME
valueFrom:
secretKeyRef:
name: mysecret
key: username
- name: SECRET_PASSWORD
valueFrom:
secretKeyRef:
name: mysecret
key: password
apply之后查看一下环境变量
$ kubectl apply -f pod-sec2.yml
pod/mysecret created
$ kubectl exec -it mysecret sh
/ # echo $SECRET_USERNAME
admin
/ # echo $SECRET_PASSWORD
abcdef
环境变量读取Secret很方便,但无法支撑Secret动态更新
ConfigMap
- Secret可以为Pod提供密码、Token、私钥等敏感数据
- 对于一些非敏感数据,比如应用的配置信息,则可以用ConfigMap
与Secret一样,ConfigMap也支持四种创建方式:
- 通过
--from-literal
:
kubectl create configmap myconfigmap --from-literal=config1=xxx --from-literal=config2=yyy
每个--from-literal
对应一个信息条目。
- 通过
--from-file
:
$ echo -n xxx > ./config1
$ echo -n yyy > ./config2
kubectl create configmap myconfigmap --from-file=./config1 --from-file=./config2
每个文件内容对应一个信息条目。
- 通过
--from-env-file
:
cat << EOF > env.txt
config1=xxx
config2=yyy
EOF
kubectl create configmap myconfigmap --from-env-file=env.txt
文件env.txt中每行Key=Value对应一个信息条目。
- 通过YAML配置文件:
apiVersion: v1
kind: ConfigMap
metadata:
name: myconfigmap
data:
config1: xxx
config2: yyy
创建configmap
[why@why-01 ~]$ kubectl apply -f configmap.yml
configmap/myconfigmap created
[why@why-01 ~]$ kubectl get configmaps
NAME DATA AGE
myconfigmap 2 9s
[why@why-01 ~]$ kubectl describe configmaps
Name: myconfigmap
Namespace: default
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration:
{"apiVersion":"v1","data":{"config1":"xxx","config2":"yyy"},"kind":"ConfigMap","metadata":{"annotations":{},"name":"myconfigmap","namespac...
Data
====
config1:
----
xxx
config2:
----
yyy
Events: <none>
与Secret一样,Configmap也是用Volume或者环境变量
pod-configmap.yml
apiVersion: v1
kind: Pod
metadata:
name: mysecret
spec:
containers:
- name: mysecret
image: busybox
args:
- /bin/sh
- -c
- sleep 10; touch /tmp/healthy; sleep 30000
volumeMounts:
- name: foo
mountPath: "/etc/foo"
readOnly: true
volumes:
- name: foo
configMap:
name: myconfigmap
pod-configmap2.yml
apiVersion: v1
kind: Pod
metadata:
name: mysecret
spec:
containers:
- name: mysecret
image: busybox
args:
- /bin/sh
- -c
- sleep 10; touch /tmp/healthy; sleep 30000
env:
- name: CONFIG_1
valueFrom:
configMapKeyRef:
name: myconfigmap
key: config1
- name: CONFIG_2
valueFrom:
configMapKeyRef:
name: myconfigmap
key: config2
apply之后也可以看到对应的明文配置
[why@why-01 ~]$ kubectl apply -f pod-configmap.yml
pod/mysecret created
[why@why-01 ~]$ kubectl exec -it mysecret sh
/ # cat /etc/foo/config1
xxx
/ # cat /etc/foo/config2
yyy
对于配置文件默认都是通过文件形式存在
apiVersion: v1
kind: ConfigMap
metadata:
name: myconfigmap2
data:
app.conf: |
config1: 1
config2: 2
config3: 3
config4: 4
apply
$ kubectl apply -f configmap2.yml
configmap/myconfigmap2 created
$ kubectl describe configmaps myconfigmap2
Name: myconfigmap2
Namespace: default
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration:
{"apiVersion":"v1","data":{"app.conf":"config1: 1\nconfig2: 2\nconfig3: 3\nconfig4: 4\n"},"kind":"ConfigMap","metadata":{"annotations":{},...
Data
====
app.conf:
----
config1: 1
config2: 2
config3: 3
config4: 4
对于文件不止能配置冒号形式的,也可以配置等号形式的等等
apiVersion: v1
kind: ConfigMap
metadata:
name: myconfigmap3
data:
app.conf: |
config1=1
config2=2
config3=3
config4=4
apply一下看一下configmap
$ kubectl apply -f configmap3.yml
configmap/myconfigmap3 created
[why@why-01 ~]$ kubectl describe configmaps myconfigmap3
Name: myconfigmap3
Namespace: default
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration:
{"apiVersion":"v1","data":{"app.conf":"config1=1\nconfig2=2\nconfig3=3\nconfig4=4\n"},"kind":"ConfigMap","metadata":{"annotations":{},"nam...
Data
====
app.conf:
----
config1=1
config2=2
config3=3
config4=4